Measuring the Effects of Happy Eyeballs

Vaibhav Bajpai Jacobs University, Bremen

RIPE 73 Madrid, Spain

Published at: Applied Networking Research Workshop July 2016: https://goo.gl/ZiICQV

Introduction

Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementation Selection of Websites Measurement Setup Measurement Trial

Data Analysis

Trends Who connects faster? Preference Slowness Lowering HE Timer Limitations

Takeway

October 2016

Supported by: Flamingo Project: flamingo-project.eu Leone Project: leone-project.eu

Joint work with

Jürgen Schönwälder Jacobs University, Bremen

Introduction | Motivation

- ▶ HE timer (300 ms) was chosen (2012) when broken IPv6 connectivity was prevalent.
 - ▶ Largely attributed to *failures* caused by Teredo [1] and 6to4 relays [2].
 - Even in situations where relays work, Teredo / 6to4 add *noticeable* latency [3, 4].
- ▶ These transition mechanisms have *declined* over the years due to efforts such as -

2013 Microsoft *stopped* Teredo on Windows and *deactivated* public Teredo servers [5].2015 The 6to4 anycast prefix has been *obsoleted* [6].

► Consequentely, failure rates over IPv6 [7] have *dropped* significantly -

	Overall	Native
2011	40%	5.3%
2015	3.5%	2%

Introduction

Motivation

Browser Implementations Research Contributions

Methodology

vletrics and Implementation ielection of Websites vleasurement Setup vleasurement Trial

Data Analysis

Trends Who connects faster? Preference Slowness Lowering HE Timer Limitations Takeway

Introduction | Browser Implementations

Fragmentation of HE is visible in browser implementations today -

- 2011 Chrome uses 300 ms [8].
- 2011 Safari uses history of witnessed latencies [9].
- 2012 Opera uses parallel TCP connections [10].
- 2012 Firefox uses parallel TCP connections [11].

Firefox [network.http.fast-fallback-to-IPv4=false] uses 250 ms.

2015 Safari uses 25 ms + history of witnessed latencies [12].

These HE timer values are arbitrarily chosen. What is the *right* timer value?

[since OS X 10.7] [since OS X 10.11 / iOS 9]

Browser Implementations

We measure against ALEXA top 10K websites for 3 years (2013 - 2016)

- 1. TCP connect times to websites over IPv6 have considerably improved over time.
- 2. 18% of websites are *faster* over IPv6 with 91% being at most 1 ms slower (May '16).
- 3. HE (300 ms) makes 99% of websites prefer IPv6 more than 98% of the time.
- 4. Slower IPv6 connections are preferred in \sim 90% of the cases.
- 5. Lowering HE (150 ms) gives a margin benefit of 10% and retains same preference levels.

Introduction Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementation Selection of Websites Measurement Setup Measurement Trial

Data Analysis

rends Who connects faster? Preference Jowness Jowering HE Timer imitations akeway

Introduction Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementation Selection of Websites Measurement Setup Measurement Trial

Data Analysis

Trends Who connects faster? Preference Slowness Lowering HE Timer Limitations

Takeway

*Methodology*¹

¹Please see previous work [13] for a more detailed description of our methodology

Methodology | Metrics and Implementation

- Uses getaddrinfo(...) to resolve service names.
- Uses non-blocking TCP connect(...) calls.
- DNS resolution time is not accounted.
- Can read multiple service names as arguments.
- Can read service names list from a file.
- File locking capability.
- Sets a delay between connect(...); avoids SYN floods.
- Can produce both human-readable & CSV output.
- Cross-compiled for OpenWrt; Running on SamKnows.

% happy -q 1 -m www.google.com www.facebook.com HAPPY.0;1360681039;0K;www.google.com;80;173.194.69.105;8626 HAPPY.0;1360681039;0K;www.google.com;80;2a00:1450:4008:c01::69;8884

Introduction Motivation Browser Implementation Research Contributions

Methodology

Metrics and Implementation Selection of Websites Measurement Setup Measurement Trial Data Analysis

Trends Who connects faster Preference Slowness Lowering HE Timer

lakeway

Methodology | Selection of Websites

We use the ALEXA top 10K websites as measurement targets [13].

- 1. www.google.com
- 2. www.facebook.com
- 3. www.youtube.com
- 4. www.yahoo.com
- 5. www.wikipedia.org
- 6. www.qq.com
- 7. www.blogspot.com
- 8. ...

Introduction

Motivation Browser Implementations Research Contributions

Methodology Metrics and Implementation

Selection of Websites

Measurement Setup Measurement Trial

Data Analysis

Trends Who connects faster? Preference Slowness Lowering HE Timer

Takeway

Methodology | Measurement Setup

The happy test repeats every hour.

Introduction

Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementation Selection of Websites Measurement Setup Measurement Trial

Data Analysis

Trends Who connects faster? Preference Slowness Lowering HE Timer Limitations

Takeway

Methodology | Measurement Trial

We measure from 80 dual-stacked SamKnows [14] probes.

9/18

Introduction

Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementation Selection of Websites Measurement Setup Measurement Trial

Data Analysis

Trends Who connects faster? Preference Slowness Lowering HE Timer Limitations

Introduction

Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementation Selection of Websites Measurement Setup Measurement Trial

Data Analysis

Trends Who connects faster? Preference Slowness Lowering HE Timer Limitations

Takeway

Data Analysis

[2013 - 2016]

Data Analysis | Trends (2013 - 2016)

$$\Delta s_a(u) = t_4(u) - t_6(u)$$

where t(u) is the time taken to establish TCP connection to website u.

▶ TCP connect times to popular websites over IPv6 have *considerably* improved over time.

Data Analysis | Who connects faster?

ALEXA top 10K websites (as of May 2016):

- ▶ 18% are *faster* over IPv6.
- ▶ 91% of the rest are at most 1 ms slower.
- ▶ 3% are at least 10 ms slower.
- ▶ 1% are at least 100 ms slower.

$$\Delta s_a(u) = t_4(u) - t_6(u)$$

Introduction

Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementatior Selection of Websites Measurement Setup Measurement Trial

Data Analysis

Who connects faster? Preference Slowness Lowering HE Timer

.....

Data Analysis | Preference

 Only ~1% of samples above HE timer value > 300 ms

- A 300 ms HE timer value leaves 2% chance for IPv4.
- 99% of top 10K ALEXA prefer IPv6 98% of time.

Introduction

Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementation Selection of Websites Measurement Setup Measurement Trial

Data Analysis

Trends Who connects faster? Preference Slowness Lowering HE Timer Limitations

Takeway

Data Analysis | Slowness

Samples where HE $\it prefers$ IPv6 -

- HE prefers slower IPv6 connections 90% of the time.
- Absolute difference is not that far apart from IPv4
 - ► 30% at least 1 ms slower.
 - ▶ 7% at least 10 ms slower.

$$\Delta s_a(u) = t_4(u) - t_6(u)$$

$$\Delta s_r(u) = \frac{t_4(u) - t_6(u)}{t_4(u)}$$

Can a lower HE timer provide same preference over IPv6 but not penalise IPv4 when it's faster?

Introduction

Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementatior Selection of Websites Measurement Setup Measurement Trial

Data Analysis

Trends Who connects faster? Preference Slowness Lowering HE Timer Limitations

Takeway

Data Analysis | Lowering HE Timer

Are we ready to disable HE entirely?

- ▶ 18% of ALEXA top 10K websites are faster (see slide 17) over IPv6 today.
- ▶ Parallel TCP connections² (HE with 0 ms timer) will *hamper* IPv6 preference.
- ▶ HE timer today still should give IPv6 a *fair* chance to succeed.

²such as used by Firefox and Opera today

Lowering HE Timer

Data Analysis | Lowering HE Timer

- We control two³ parameters and lower the HE timer value.
- Each data point is the 1th percentile preference towards ALEXA 10K websites.

- Lowering to 150 ms retains preference levels over IPv6.
- We get margin benefit of 10% (18.9K) because timer cuts early.

Introduction

Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementation Selection of Websites Measurement Setup Measurement Trial

Jata Analysis Trends

Who connects faster Preference

Slowness

Lowering HE Timer

Limitations

Takeway

³99% ALEXA top 10K websites prefer IPv6 connections 98.6% of the time

- 1. The comparison reflects the performance as seen over TCP port 80 only.
- 2. The measurements cover ALEXA top 10K websites only.
- 3. The results are biased by our vantage points (centered largely around EU, US and JP).

Introduction

Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementation Selection of Websites Measurement Setup Measurement Trial

Data Analysis

Trends Who connects faster? Preference Slowness Lowering HE Timer

Limitations

Takeway

Takeway

- 1. TCP connect times to websites over IPv6 have considerably improved over time.
- 2. 18% of websites are *faster* over IPv6 with 91% being at most 1 ms slower (May '16).
- 3. HE (300 ms) makes 99% of websites prefer IPv6 more than 98% of the time.
- 4. Slower IPv6 connections are preferred in \sim 90% of the cases.
- 5. Lowering HE (150 ms) gives a margin benefit of 10% and retains same preference levels.

www.vaibhavbajpai.com

v.bajpai@jacobs-university.de | @bajpaivaibhav

Introduction

Motivation Browser Implementations Research Contributions

Methodology

Metrics and Implementatior Selection of Websites Measurement Setup Measurement Trial

Data Analysis

Trends Who connects faster? Preference Slowness Lowering HE Timer Limitations Takeway

Background Research Question Related Work

Appendix

References

- C. Huitema, "Teredo: Tunneling IPv6 over UDP through Network NATs," RFC 4380, Internet Engineering Task Force, Feb. 2006, https://tools.ietf.org/html/rfc4380.
- [2] B. Carpenter and K. Moore, "Connection of IPv6 Domains via IPv4 Clouds," RFC 3056, Internet Engineering Task Force, Feb. 2001, https://tools.ietf.org/html/rfc3056.
- [3] S. Zander, L. L. H. Andrew, G. J. Armitage, G. Huston, and G. Michaelson, "Investigating the IPv6 Teredo Tunnelling Capability and Performance of Internet Clients," ser. Computer Communication Review (CCR) '12, 2012, pp. 13–20. [Online]. Available: http://doi.acm.org/10.1145/2378956.2378959
- [4] L. Colitti, S. H. Gunderson, E. Kline, and T. Refice, "Evaluating IPv6 Adoption in the Internet," ser. Passive and Active Measurement Conference (PAM) '10, 2010, pp. 141–150. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-12334-4_15
- "Christopher Palmer Teredo at Microsoft: Present and Future," http://goo.gl/9I65Wy, [Online; accessed 10-February-2016].
- [6] O. Troan and B. Carpenter, "Deprecating the Anycast Prefix for 6to4 Relay Routers," RFC 7526, Internet Engineering Task Force, May 2015, https://tools.ietf.org/html/rfc7526.
- "Geoff Huston Measuring IPv6 Performance," https://goo.gl/n78W1t, [Online; accessed 10-February-2016].

- "Google Chrome Revision 85934: Add a fallback socket connect() for IPv6." https://goo.gl/nPhilZ, [Online; accessed 25-January-2016].
- [9] J. Graessley, "Apple Lion and IPv6," http://goo.gl/uAPlV8, [Online; accessed 25-January-2016].
- [10] "Opera 12.10 Changelog," http://goo.gl/MGsn4K, [Online; accessed 25-Jan-2016].
- [11] "Mozilla Firefox 15 Release Notes," http://goo.gl/hA15eu, [Online; accessed 25-January-2016].
- D. Schinazi, "Apple and IPv6 Happy Eyeballs," https://goo.gl/1nzMs6, [Online; accessed 25-January-2016].
- [13] V. Bajpai and J. Schönwälder, "IPv4 versus IPv6 who connects faster?" ser. IFIP NETWORKING '15, 2015, pp. 1–9. [Online]. Available: http://dx.doi.org/10.1109/IFIPNetworking.2015.7145323
- [14] ——, "A Survey on Internet Performance Measurement Platforms and Related Standardization Efforts," ser. IEEE Communications Surveys and Tutorials (COMST) '15, 2015, pp. 1313–1341. [Online]. Available: http://dx.doi.org/10.1109/COMST.2015.2418435
- [15] D. Thaler, R. Draves, A. Matsumoto, and T. Chown, "Default Address Selection for Internet Protocol Version 6 (IPv6)," RFC 6724 (Proposed Standard), Internet Engineering Task Force, Sep. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6724.txt

Background Research Question Related Work

- [16] "Teemu Savolainen Experiences of host behavior in broken IPv6 networks," http://goo.gl/4NnRiH, [Online; accessed 25-January-2016].
- [17] P. Richter, M. Allman, R. Bush, and V. Paxson, "A Primer on IPv4 Scarcity," ser. Computer Communication Review (CCR), vol. 45, no. 2. New York, NY, USA: ACM, Apr. 2015, pp. 21–31. [Online]. Available: http://doi.acm.org/10.1145/2766330.2766335
- [18] "Internet Society World IPv6 Launch," http://www.worldipv6launch.org, [Online; accessed 11-January-2016].
- "Google IPv6 Adoption Statistics," http://www.google.com/intl/en/ipv6/statistics.html, [Online; accessed 11-January-2016].
- [20] "Lorenzo Colitti Google no longer returning AAAA records?" https://goo.gl/6Z7gZM, [Online; accessed 11-January-2016].
- [21] "Emile Aben Hampering Eyeballs: Observations on Two Happy Eyeballs Implementations," https://goo.gl/3xVUIO, [Online; accessed 10-February-2016].
- [22] "Geoff Huston Dual Stack Esotropia," http://goo.gl/N1qUib, [Online; accessed 10-February-2016].

- [23] "Geoff Huston Bemused Eyeballs: Tailoring Dual Stack Applications for a CGN Environment," http://goo.gl/LMPc4h, [Online; accessed 10-February-2016].
- [24] F. Baker, "Testing Eyeball Happiness," RFC 6556, Internet Engineering Task Force, 2012, https://tools.ietf.org/html/rfc6556.
- [25] S. Zander, L. L. H. Andrew, G. J. Armitage, G. Huston, and G. Michaelson, "Mitigating Sampling Error when Measuring Internet Client IPv6 Capabilities," ser. Internet Measurement Conference (IMC) '12, 2012, pp. 87–100. [Online]. Available: http://doi.acm.org/10.1145/2398776.2398787
- [26] V. Bajpai and J. Schönwälder, "Measuring the Effects of Happy Eyeballs," Internet Engineering Task Force, Internet-Draft draft-bajpai-happy-01, Jul. 2013, work in Progress. [Online]. Available: http://tools.ietf.org/html/draft-bajpai-happy-01
- [27] S. Ahsan, V. Bajpai, J. Ott, and J. Schönwälder, "Measuring YouTube from Dual-Stacked Hosts," ser. Passive and Active Measurement Conference (PAM) '15, 2015, pp. 249–261. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-15509-8_19

Background Research Question

Related Work

Introduction | getaddrinfo(...) behavior

- ▶ returns a list of endpoints in an order that prioritizes an IPv6-upgrade path.
- ► The order is prescribed by RFC 6724 [15] and /etc/gai.conf
- ▶ Iterating sequentially over the list of IP endpoints has repercussions -
 - ▶ Broken IPv6 connectivity makes apps stall for *several* seconds before trying IPv4.
 - Studies have reported [16] browser connection timeouts in the order of 20 seconds.

Background

Introduction | Happy Eyeballs [RFC 6555]

HE helps prevent bad QoE in situations where IPv6 connectivity is broken.

Design Goals -

- ▶ Honor the destination address selection policy [RFC 6724] [15].
- Quickly fallback to IPv4 when IPv6 connectivity is broken.
- Give a *fair* chance for IPv6 to succeed.

Introduction | Motivation

IPv6 landscape has changed today -

▶ 4/5 RIRs have *exhausted* available pool of IPv4 address space [17].

APNIC	Apr'11
RIPE	Sep'12
LACNIC	Jun'14
ARIN	Sep'15

- ▶ Large IPv6 broadband rollouts⁴ since World IPv6 Launch Day in 2012 [18].
- ▶ IPv6 global adoption at ~12.2% (native) with Teredo / 6to4 at ~0.01% [19] (July 2016)
- ► Google over IPv6 (whitelist) program *replaced* by a Google IPv6 blacklist [13].
- ► Google will not return AAAA to resolvers where latency over IPv6 > 100 ms worse [20].

⁴Comcast, Deutsche Telekom AG, AT&T, Verizon Wireless, T-Mobile USA

The effects of HE (300 ms) on the QoE of a dual-stacked user remains largely unclear.

We want to know –

- ► In what percentage of cases HE makes a bad decision of choosing IPv6 when it's slower?
- In such situations what is the amount of imposition (in terms of latency impact) a dual-stacked user has to pay as a result of the high HE timer (300 ms) value?

Applications apply HE not only where IPv6 is broken, but also when IPv6 is comparable.

Related Work

2011 - 2012 Studies [21, 22, 23] have analyzed HE implementations.

- Chrome reduces degraded user experience when IPv6 is broken.
- ► Firefox [network.http.fast-fallback-to-IPv4=false] behaves similar to Chrome.
- ► Safari prefers IPv4 even when IPv6 connectivity is similar (*hampering eyeballs*).

These studies are dated. HE implementations have *changed* with time (see slide 7).

- 2012 Baker [24] describes HE metrics and testbed configurations.
- 2012 Zander [25] showed that 75% of the connection attempts preferred⁵ IPv6.
- 2013 We [26] showed that HE never prefers IPv6 using Teredo.
- 2015 We [27] showed that HE prefers YouTube over IPv6 even when IPv4 performs better.

⁵In this work, we show that this preference has increased to 98% today