Anycast Latency How many sites are enough?

Presented by
Ricardo de Oliveira Schmidt

October 25, 2016
Madrid, Spain

Reference:

Anycast Latency: How Many Sites Are Enough?

Ricardo de O. Schmidt, John Heidemann and Jan Harm Kuipers
Technical Report ISI-TR-2016-708, USC/Information Sciences Institute, May 2016

- http://www.isi.edu/~johnh/PAPERS/Schmidt16a.pdf

Anycast

Definition
Multiple copies of a service at different locations configured to answer with the same IP address

Purpose
Distribution, redundancy, resilience, performance

Where
Content Delivery Networks (CDNs)
DNS at the root and TLD levels

Anycast

Anycast

Anycast

Anycast

Anycast uses BGP to map users to sites But BGP only approximates closest match

RQ's and Approach

If BGP only approximates closest in anycast:

1. How good (or bad) is this approximation?
2. What is the impact of location of anycast sites?
3. What is the impact of routing policy?

Can we determine a minimum number of anycast sites as optimal?
To answer these questions we...
... study the relationship between latency and number of anycast sites
... look at the Root DNS as case of study

Root DNS (or a part of it)

Our case of study were four letters of the Root DNS:
C: 8 sites
F: 58 sites
K: 33 sites
L: 144 sites

We DO NOT focus on:
What a letter should or not do

RIPE Atlas

Our vantage points (VPs) are RIPE Atlas probes

7,900 of them

174 countries
2927 ASes

The bias towards Europe does not impact our qualitative results and conclusions

Measurements

Step 1: determine catchment
CHAOS queries to hostname. bind to anycast prefix...
... returns a string that identifies a server

Measurements

Step 2: determine (optimal) latency
ICMP (ping) to all sites of the anycast...
... as given by the identifier from CHAOS

What Performance do we see?

Distribution of RTT for all letters:

We do not determine a threshold for good or bad performance...
... but we do believe that 30 ms is very good

What RTT is possible?

Comparing actual to optimal possible:
C-Root with 8 sites is at its optimal
L-Root with 144 sites has plenty of room
But their median is roughly the same

Note:
Comparing anycast and unicast routing

What about location?

Location matters!

Simulation using C-Root sites from west to east coast

Note:
C-Root has sites in Europe
Bias from RIPE Atlas is visible

What about location?

Location matters!

Simulation using C-Root sites
from US and Europe

What about location?

Location matters!

Simulation using C-Root sites from US and Europe

Sites vs Location

So, at the end many sites do help those at the end of the distribution tail...
... but it depends where and how connected

Sites vs Location

So, at the end many sites do help those at the end of the distribution tail...
... but it depends where and how connected

Sites vs Location

So, at the end many sites do help those at the end of the distribution tail...
... but it depends where and how connected

Final Considerations

Looking at real-world anycast deployments we learned that...
... number of sites can make a difference on performance, but...
... location and connectivity of sites have higher impact
... we believe that ~ 12 well-connected sites is "enough" for performance

For the future, we will focus on other purposes of anycast:
Resilience to Denial of Service attacks
Load balancing

Final Considerations

Looking at real-world anycast deployments we learned that...
... number of sites can make a difference on performance, but...
... location and connectivity of sites have higher impact
... we believe that ~ 12 well-connected sites is "enough" for performance

For the future, we will focus on other purposes of anycast:

Resilience to Denial of Service attacks
Load balancing
in about 20 minutes
(depending on Wouter)

Acknowledgements:

Geoff Huston, George Michaelson, Ray Bellis, Cristian Hesselman, Benno Overeinder, Jaap Akkerhuis, Duane Wessels, Paul Vixie, Romeo Zwart, Anand Buddhdev, and C-Root operators.

SIDN Labs, NLnet Labs and SURFnet

Self-managing Anycast Networks for the DNS (SAND) project | http://www.sand-project.nl/ DNS Anycast Security (DAS) project | http://www.das-project.nl/

UNIVERSITY OF TWENTE. S Dy iabs

