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• Domain Popularity Ranking
Derive Domain Popularity by mining DNS data
Noisy nature of DNS data
Certain source addresses represent resolvers, the 
rest a variety of behavior

Can we pinpoint the resolvers?

Background
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• Long tail of addresses sending a few 
queries on a given day

Noisy DNS
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• To identify resolvers, we need some data
• Base curated data

836 known resolvers addresses
• Local ISPs, Google DNS, OpenDNS

276 known non-resolvers addresses
• Monitoring addresses from ICANN

• Asking for www.zz--icann-sla-monitoring.nz
• Addresses sending only NS queries

Data Collection

RIPE 73In the search of resolvers 4



• Do all resolvers behave in a similar way
http://blog.nzrs.net.nz/characterization-of-
popular-resolvers-from-our-point-of-view-2/

• Conclusions
There are some patterns

• Primary/secondary address
• Validating resolvers
• Resolvers in front of mail servers

Exploratory Analysis
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• Can we predict if a source address is a 
resolver?

• 14 features per day per address
Fraction of A, AAAA, MX, TXT, SPF, DS, DNSKEY, 
NS, SRV, SOA
Fraction of NoError and NxDomain responses
Fraction of CD and RD queries

• Training data
Extract 1 day of DNS traffic (653,232 unique 
source addresses)

Supervised classifier
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Training Model
LinearSVC
__________________________________________________________________________
Training: 
LinearSVC(C=1.0, class_weight='balanced', dual=True, fit_intercept=True,

intercept_scaling=1, loss='squared_hinge', max_iter=1000,
multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
verbose=0)

train time: 0.003s
Cross-validating: 
Accuracy: 1.00 (+/- 0.00)
CV time: 0.056s
test time:  0.000s
accuracy:   1.000
dimensionality: 14
density: 1.000000
classification report:

precision    recall  f1-score   support

0       1.00      1.00      1.00        73
1       1.00      1.00      1.00       206

avg / total       1.00      1.00      1.00       279
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100% Accuracy! 
Success!

Random Forest:
100% accuracy! 

K Neighbors:
100% accuracy! 



• Use the model with different days
Resolver is represented as 1, and non-resolver as 
0.

Test the model 

df = predict_result(model, "20160301")
df.isresolver_predict.value_counts()
1    645060
0      8172

df = predict_result(model,"20160429")
df.isresolver_predict.value_counts()
1    529757
0      6243

df = predict_result(model,"20151212")
df.isresolver_predict.value_counts()
1    453640
0      9279
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Very high 
proportion of 

resolvers?



• Most of the addresses classified as 
resolvers
List of non-resolvers show a very specific 
behaviour

Model is fitting that specific behaviour

• Improve the training data to include 
different patterns.

Preliminary Analysis
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• What if we let a classifier to learn the 
structure instead of imposing

• The same 14 features, 1 day’s DNS traffic
• Ignore clients that send less than 10 

queries
Reduce the noise

• Run K-Means Algorithm with K=6
Inspired by Verisign work from 2013

• Calculate the percentage of clients 
distributed across clusters

Unsupervised classifier
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K-Means Cost Curve
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Query Type Profile per cluster
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Rcode profile per cluster
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Flag profile per cluster
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• How many known 
resolvers fall in the 
same cluster?
• How many known 

non-resolvers?

• Tested on both 
week day and 
weekend, 98% ~ 
99% known 
resolvers fit in the 
same cluster

Clustering accuracy
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• Another differentiating factor could be 
client persistence

• Within a 10-day rolling window, count the 
addresses seen on specific number of days

• Addresses sending traffic all the time will 
fit into known resolvers and monitoring 
roles

Client persistence
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Client Persistence
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Resolvers persistence

RIPE 73In the search of resolvers 18

• Do the known resolvers addresses fall into 
the hypothesis of persistence?

• What if we check their presence in 
different levels?



Resolvers persistence
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• Identify unknown resolvers by checking 
membership to the “resolver like” cluster

• Exchange information with other operators 
about known resolvers.

• Potential uses: curated list of addresses, 
white listing, others.

Future work

RIPE 73In the search of resolvers 20



• This analysis can be repeated by other 
ccTLDs using authoritative DNS data

• Using open source tools
Hadoop + Python

• Code analysis will be made available
• Easily adaptable to use ENTRADA

Conclusions
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