

In the search of resolvers

Jing Qiao 乔婧, Sebastian Castro - NZRS

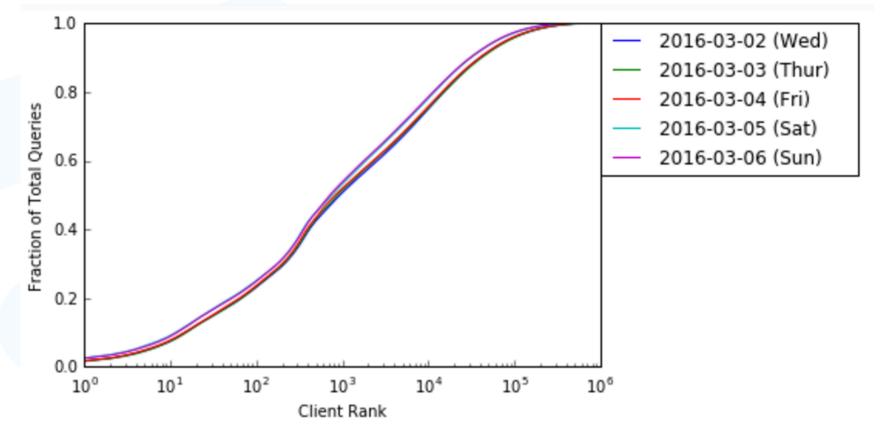
DNS-WG, RIPE 73, Madrid

Background

Domain Popularity Ranking
 Derive Domain Popularity by mining DNS data
 Noisy nature of DNS data
 Certain source addresses represent resolvers, the rest a variety of behavior

Can we pinpoint the resolvers?

 Long tail of addresses sending a few queries on a given day



Data Collection

- To identify resolvers, we need some data
- Base curated data

836 known resolvers addresses

- Local ISPs, Google DNS, OpenDNS
- 276 known non-resolvers addresses
 - Monitoring addresses from ICANN
 - Asking for www.zz--icann-sla-monitoring.nz
 - Addresses sending only NS queries

Exploratory Analysis

 Do all resolvers behave in a similar way <u>http://blog.nzrs.net.nz/characterization-of-</u> <u>popular-resolvers-from-our-point-of-view-2/</u>

Conclusions

There are some patterns

- Primary/secondary address
- Validating resolvers
- Resolvers in front of mail servers

Supervised classifier

- Can we predict if a source address is a resolver?
- 14 features per day per address
 Fraction of A, AAAA, MX, TXT, SPF, DS, DNSKEY, NS, SRV, SOA
 Fraction of NoError and NxDomain responses
 Fraction of CD and RD queries
- Training data

Extract 1 day of DNS traffic (653,232 unique source addresses)

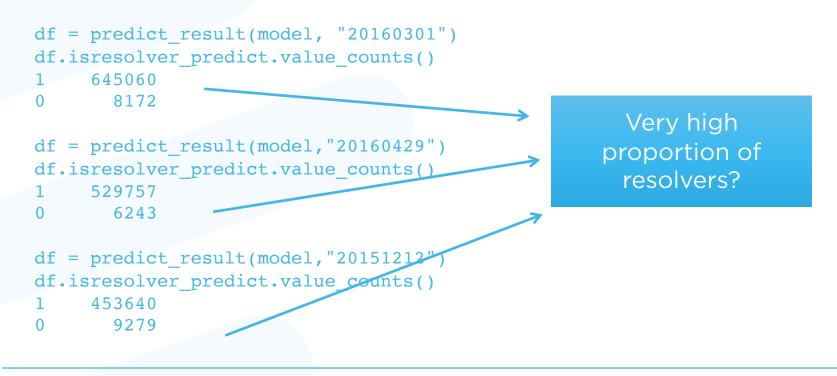
Training Model

LinearSVC

Training:									
LinearSVC(C=1.0, class_weight='balanced', dual=True, fit_intercept=True,									
intercept scaling=1, loss='squared hinge', max iter=1000,									
<pre>multi_class='ovr', penalty='12', random_state=None, tol=0.0001,</pre>									
verbose=0)									
train time: (Random Forest:								
Cross-validating: Success!				100% accuracy!					
Accuracy: 1.0	Accuracy: 1.00 (+/- 0.00)								
CV time: 0.056s									
test time: (test time: 0.000s K Neighbors:								
accuracy:	100% accuracy!								
dimensionality: 14									
density: 1.000000									
classificatio	on report:								
	precision	recall	f1-score	support					
0	1.00	1.00	1.00	73					
1	1.00	1.00	1.00	206					
avg / total	1.00	1.00	1.00	279					

Test the model

 Use the model with different days Resolver is represented as 1, and non-resolver as 0.



Preliminary Analysis

Most of the addresses classified as resolvers

List of non-resolvers show a very specific behaviour

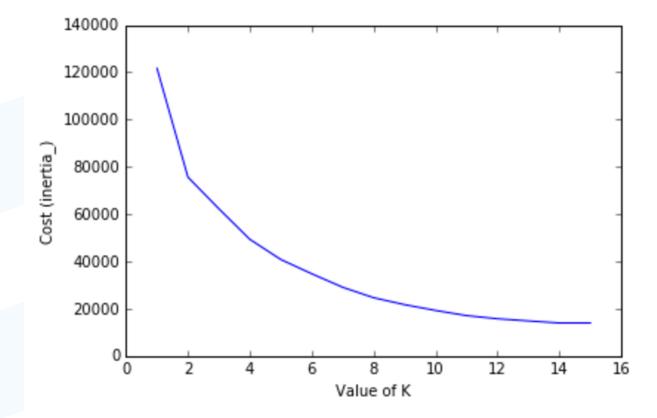
Model is fitting that specific behaviour

• Improve the training data to include different patterns.

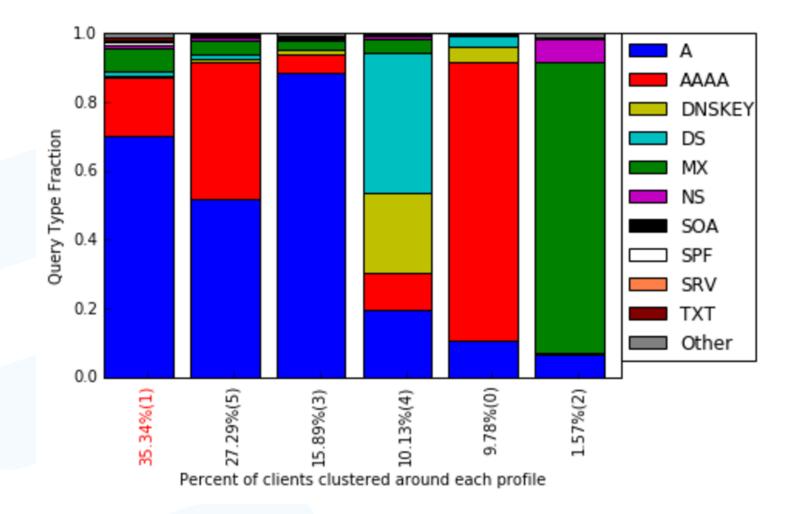
Unsupervised classifier

- What if we let a classifier to learn the structure instead of imposing
- The same 14 features, 1 day's DNS traffic
- Ignore clients that send less than 10 queries
 Reduce the noise
- Run K-Means Algorithm with K=6 Inspired by Verisign work from 2013
- Calculate the percentage of clients distributed across clusters

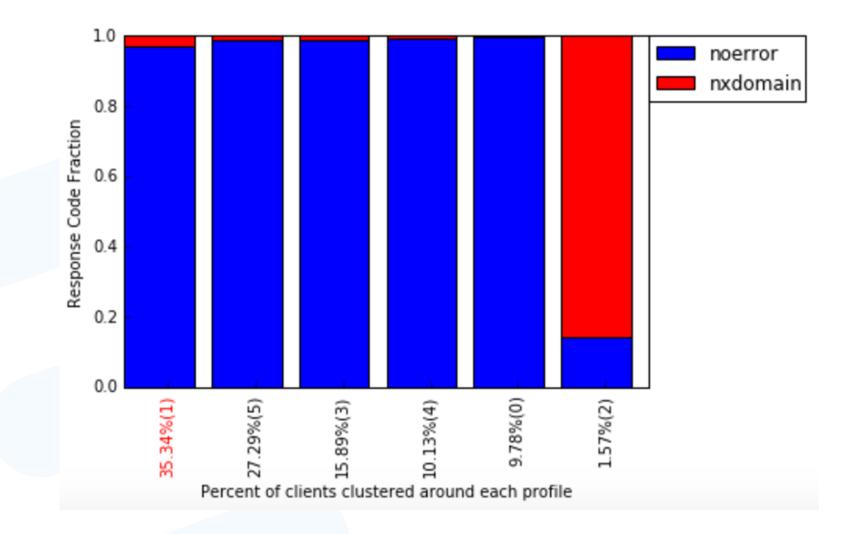
K-Means Cost Curve



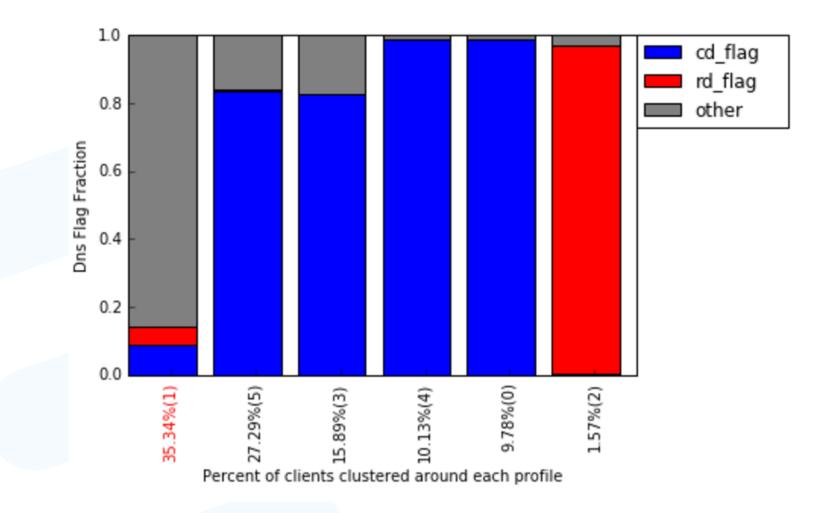
Query Type Profile per cluster



Rcode profile per cluster



Flag profile per cluster



NZRS=

Clustering accuracy

- How many known resolvers fall in the same cluster?
 - How many known non-resolvers?
- Tested on both week day and weekend, 98% ~ 99% known resolvers fit in the same cluster

df_res_label

	label	resolver_ip	total	percent
0	1	831	839	99.05%
1	3	4	839	0.48%
2	4	3	839	0.36%
3	5	1	839	0.12%

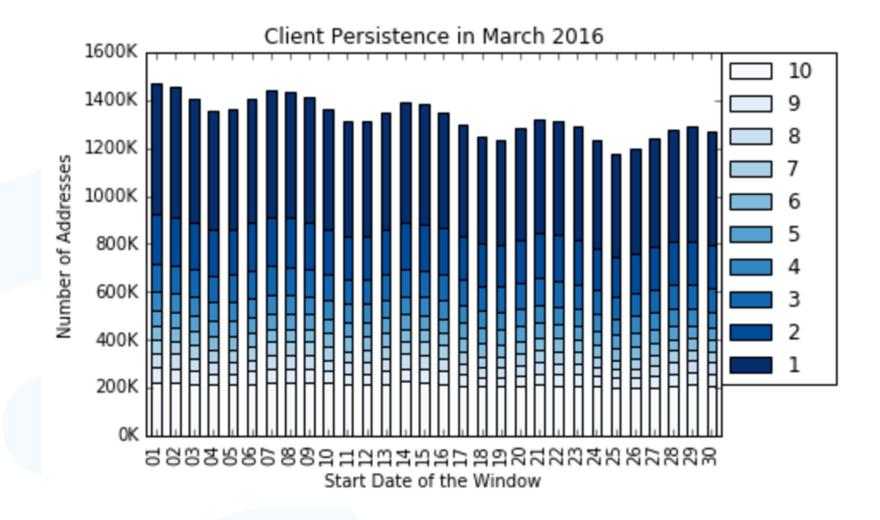
df_nonres_label

	label	nonres_ip	total	percent
0	1	74	275	26.91%
1	2	200	275	72.73%
2	4	1	275	0.36%

Client persistence

- Another differentiating factor could be client persistence
- Within a 10-day rolling window, count the addresses seen on specific number of days
- Addresses sending traffic all the time will fit into known resolvers and monitoring roles

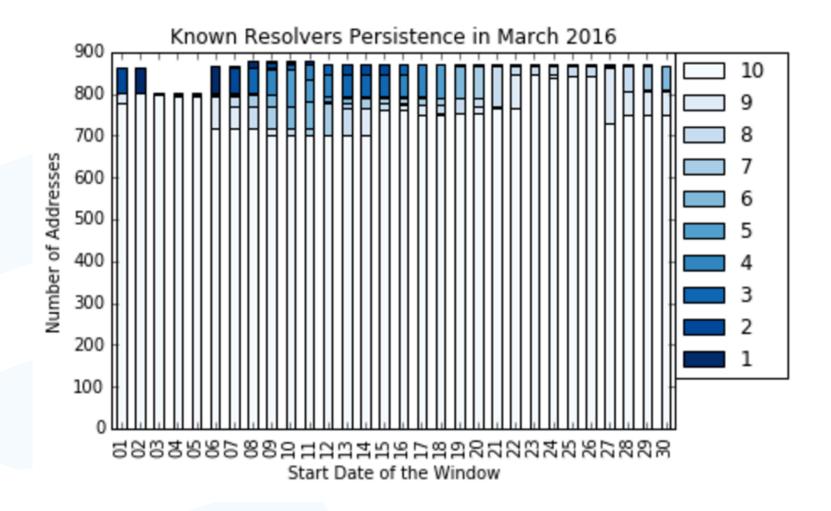
Client Persistence



Resolvers persistence

- Do the known resolvers addresses fall into the hypothesis of persistence?
- What if we check their presence in different levels?

Resolvers persistence



NZRS=

Future work

- Identify unknown resolvers by checking membership to the "resolver like" cluster
- Exchange information with other operators about known resolvers.
- Potential uses: curated list of addresses, white listing, others.

Conclusions

- This analysis can be repeated by other ccTLDs using authoritative DNS data
- Using open source tools
 Hadoop + Python
- Code analysis will be made available
- Easily adaptable to use ENTRADA

Contact: jing@nzrs.net.nz, sebastian@nzrs.net.nz www.nzrs.net.nz

