

RIPE NCC DNS Update

Anand Buddhdev Oct 2016 RIPE 73

The DNS team

Anand

Colin

lñigo

Paul

Florian

Romeo

K-root

AS 25152

Status

- Active at 44 sites
 - Five "core" sites multi-server, high capacity
 - 39 "hosted" sites single server
- Bird, Cisco, ExaBGP and Juniper for routing
 - BGP anycast for high availability and low latency
- BIND 9.10, Knot 1.6 and NSD 4
 - Update to Knot 2 soon
- More applications from hosts in the queue

Authoritative DNS

AS 197000

Features

- BGP anycast from three sites
- RIPE NCC's forward and reverse zones
- Secondary for other RIRs' forward and reverse zones
- Secondary for ccTLDs
- Secondary for large reverse zones of RIPE NCC members
- Diversity with BIND, Knot and NSD, as well as Cisco and Juniper routers

ccTLD Status

- RIPE 663 published in December 2015
- We are evaluating all ccTLDs
 - 28 ccTLDs do not qualify based on zone size
 - Some ccTLDs do not qualify based on name server set
 - Process will continue until mid-2017
- ccTLDs that qualify will have to sign an agreement with RIPE NCC to receive secondary DNS service
 - Agreement to be renewed periodically

Other Secondary Zones

- Forward and reverse DNS zones of other RIRs will remain
- Internet infrastructure zones will remain, eg.
 - root-servers.org
 - as112.net
- Zones of other operators, especially commercial ones, will stop receiving service

Resiliency for ripe.net

- Improve resiliency for ripe.net in the face of bigger and more frequent DDoS attacks
- Open request-for-proposal process from July to September 2016
- We received three proposals, and selected the one that best satisfied our requirements
 - Verisign is now providing secondary DNS for ripe.net and related zones
 - Contract to be reviewed annually

DNSMON

Features

- Distributed DNS monitoring system
- Based on the RIPE Atlas infrastructure
 - Measurements from more than 50 RIPE Atlas anchors
- SOA, hostname.bind and version.bind queries, with NSID enabled
 - Both over UDP and TCP
- https://atlas.ripe.net/dnsmon/

DNSMON Visualisation

Domains in DNSMON

- RIPE 661 has criteria about which ccTLDs qualify
 - ccTLDs (including IDN variants) in the RIPE NCC service region
 - ccTLDs not in the RIPE NCC service region, whose administrative or technical contacts in the IANA database are RIPE NCC members

DomainMON

- DNSMON's little brother
- Monitor any domain as long as you have RIPE Atlas credits
- Monitoring from probes, rather than anchors
- Visualisation similar to DNSMON

Server Benchmarking

Motivation

- DDoS attacks are becoming bigger
- We want to have a more flexible upgrade path, including (multiple) 10G connections
- We need to understand how our OS and DNS software performs at such speeds

Test Setup

- One switch with 10 Gbit/s ports
- Three Dell servers with 10 Gbit/s interfaces
 - Intel Xeon E5-2470 2.4 Ghz, 10-core processor
 - First server is the source of queries
 - Second server runs the DNS software
 - Third server is the sink
- BIND 9.10, Knot DNS 1.6 and 2, NSD 4, Yadifa 2.2 and PowerDNS 4

Query Source Server

- tcpreplay, compiled with Quick_TX
 - Writes packets directly to an interface
- 5-minute pcap file with queries from a K-root server
- 6,882,162 packets sent each time
 - Should generate 6,882,142 responses (20 dud query packets)

DNS Server

- All DNS software configured with root, arpa and root-servers.net zones
- Routing set up to send all responses to sink server
- iptables with PREROUTING and OUTPUT chains of "raw" table to count queries and responses
- Target NOTRACK avoids keeping state

Response Sink Server

 iptables with PREROUTING chain of "raw" table to count and drop responses

Test Runs

- Three runs of tcpreplay, recording the best result
 - Started at 100,000 q/s
 - Ramped up by 100,000 each time until name server shows loss
 - Finished with maximum rate (tcpreplay's -t option)

Summary of Results

- CentOS 6 doesn't work its old kernel/drivers lost 85% of the packets
 - Need to upgrade to CentOS 7
- NSD 4 is the best performer, as long as:
 - "server-count" is increased from 1 to number of CPUs
 - "reuseport" is set to "yes"
- Faster CPUs and more cores are required to saturate a 10 Gbit/s network interface

Reverse DNS

Pre-delegation testing

DNScheck -> Zonemaster

- DNScheck has been abandoned
- Zonemaster:
 - Has better tests
 - Handles newer DNSSEC algorithms
 - Is being actively developed by IIS and AFNIC
- Migration from DNScheck to Zonemaster will happen in the coming weeks
 - Users may see slightly different diagnostic output

Inter-RIR Transfers

Reverse DNS

Reverse DNS provisioning

- Reverse DNS delegation accepted through RIPE Database
- Automatic provisioning in parent zones
 - Software adjusts itself for transferred space
 - Publishes zonelets for other RIRs to pick up
 - Downloads zonelets from other RIRs to merge in delegation records
- Some delegation can take up to 24 hours to be published

Questions

anandb@ripe.net @aabdnn