

THE IMPACT OF ROUTING ON ANYCAST

(How to) measure a controllable anycast network

INTRODUCTION – WHO AM I?

Wouter de Vries

PhD student

Design and Analysis of Communication Systems Group

UNIVERSITY OF TWENTE.

LIGHTNING RECAP

Routing policies "decide" which client reaches which server within an anycasted service

Catchment

SO WHAT IS THE MATTER?

- Routing policies are diverse
- End-to-End network paths can usually not be controlled directly

So: Catchments can be chaotic

SO WHAT IS THE MATTER?

- Routing policies are diversity
- End-to-End network End hs can usually not be controlled citedity

So: Catchments can be chaotic

TWO –INITIAL- PROBLEMS

- Existing anycast services are interesting but: mostly static ☺
- How to determine the catchment

INITIAL PROBLEM 1 - SOLUTION

Use an anycast service that can be controlled

Peering[1]

or

Setup your own

[1] Schlinker, Brandon, et al. "PEERING: An AS for us." Proceedings of the 13th ACM Workshop on Hot Topics in Networks. ACM, 2014.

SETTING UP YOUR OWN ANYCAST "SERVICE" As seen at RIPE69[2]

- Easier said than done -

[2] Nat Morris, "Anycast on a shoe string", RIPE69

SETTING UP YOUR OWN ANYCAST NETWORK

- Convince people to host a node/site/instance (VM) ideally for free
- Setup the BGP session

WHAT DO WE HAVE SO FAR?

Name	Upstream AS	Location	Hoster
us-was-anycast01 🗸	1972	United States, Washington	USC/ISI
us-mia-anycast01 🗸	20080	United States, Miami	FIU
nl-ens-anycast01 🗸	1103	Netherlands, Enschede	University of Twente
au-syd-anycast01√	20473	Australia, Sydney	VULTR
fr-par-anycast01 🗸	20473	France, Paris	VULTR
dk-cop- anycast01√	39389	Denmark, Copenhagen	DK-Hostmaster
jp-hnd-anycast01 🗸	2500	Japan, Tokyo	USC/ISI - WIDE
uk-Ind-anycast02√	20473	United Kingdom, London	VULTR
br-gru-anycast01	1251	Brazil, São Paulo	FIU
nl-arn-anycast01	1140	Netherlands, Arnhem	SIDN

12

TWO INITIAL "PROBLEMS"

- Existing anycast services are interesting but: mostly static ⊕ √
- How to determine the catchment

THE OPTIONS

- RIPE Atlas
- PlanetLab, NLNOG Ring, ..., etc (?)
- Measure from the inside

MEASURING FROM THE INSIDE

- 1: Ping The Internet[™]
- 5: šššššš
- 3: We know the catchment

PINGING -- FROM THE INSIDE OUT-

IP HITLIST

We ping 1 IP(v4) for every IP(v4) /24 prefix

e.g. for 172.16.6.0/23, ping 172.16.6.25 and 172.16.7.29

COVERAGE

Approximately 90% of all Ases 30% of ASes: 5 "VPs" or more

CONCLUSIONS

- Creating your own real-world testbed for BGP is possible
- A ping can give you a lot of information in an anycast environment
- Fertile ground for anycast catchment optimization

DATA & TOOLS

Used tools are available https://github.com/woutifier

Data will be made available soonTM

THE END

Questions, Comments

Collaboration proposals are welcome