Studying Transnational Routing Detours through Surveillance States

Annie Edmundson, Roya Ensafi, Nick Feamster, Jennifer Rexford Princeton University

RIPE 73 October 24th-28th, 2016

Characterizing detours

- Which countries are Internet paths to popular destinations currently traversing?
- Does local traffic leave the country? To where?

Avoiding detours

- Can end-users avoid certain countries to popular destinations?
- Can end-users keep more local traffic local?

Current State of Surveillance

Created with mapchart.net ©

Surveillance States Reactions against Surveillance Studied Countries

Characterizing detours

- Which countries are Internet paths to popular destinations currently traversing?
- Does local traffic leave

The most common destination and transit country among all five countries studied is the United States.

Avoiding detours

- Can end-users avoid certain countries to popular destinations?
- Can end-users keep more local traffic local?

Measurement Study: Experiment

Where are popular domains hosted?

ŝ

	and ⁵							
	Terminating in Country	Bratil	Aetheria.	India	Kenya	United S.		
	Brazil	.169	-	-	-	-		
	Canada	.001	.007	.015	.006	_		
K	United States	.774	.454	.629	.443	.969	>	
77.4% of paths that start in	France	.001	.022	.009	.023	.001		
Brazil terminate	Great Britain	-	.013	.014	.028	.001		
n the United	Ireland	.016	.064	.027	.108	.001		
states	Netherlands Spain	.013 .001	.392	.101	.200	.024 -		
	Kenya	-	-	-	.022	-		
	Mauritius	-	-	-	.004	-		
	South Africa	-	-	-	.021	-		
	United Arab Emirates	-	-	-	.011	_		
	India	-	-	.053	.002	-		
	Singapore	-	.002	.103	.027	-	6	

Which countries are on the path to popular domains?

			States				
	Transiting Country	Bralil	Netherlic	milia	4enya	United	
	Brazil	1.00	-	-	-	-	
	Canada	.013	.007	.016	.008	081	
K	United States	.844	.583	.715	.616	1.00	>
84.4% of paths that start in Brazil have the United States on	France	.059	.102	.104	.221	.104	
	Germany	.005	.050	.032	.048	.008	
	Great Britain	.024	.140	.204	.500	.006	
the path	Ireland	.028	.106	.031	.133	.006	
	Netherlands	.019	1.00	.121	.253	.031	
	Spain	.176	.004	-	-	-	
	Kenya	-	-	-	1.00	_	
	Mauritius	-	-	-	.322	-	
	South Africa	-	-	-	.334	-	
	United Arab Emirates	-	-	-	.152	_	
	India	-	-	1.00	.058	-	
	Singapore	-	.002	.270	.040	.003	7

Characterizing detours

- Which countries are Internet paths to popular destinations currently traversing?
- Does local traffic leave the country? To where?

Avoiding detours

- Can end-users avoid certain countries to popular destinations?
- Can end-users keep more local traffic local?

Netherlands: Where is local traffic going?

Brazil: Where is local traffic going?

Brazil begins laying its own Internet cables to avoid U.S. surveillance

Brazil looks to break from US-centric

Kenya: Where is local traffic going?

Characterizing Routing Detours: Summary

- Routing detours often transit surveillance states – especially the United States
- Local traffic doesn't always stay local

 Is it possible to avoid certain countries by tunneling traffic through relays?

Characterizing detours

- Which countries are Internet paths to popular destinations currently traversing?
- Does local traffic leave the country? To where?

Yes, but it's more difficult to avoid the United States than it is to avoid any other country.

Avoiding detours

- Can end-users avoid certain countries to popular destinations?
- Can end-users keep more local traffic local?

Country Avoidance

 Country Avoidance = fraction of paths that do not pass through Country X

Avoidance Study: Experiment

Client to Relay Path:

Can clients avoid countries more often?

Yes – many countries are almost completely avoidable for the top 100 domains

	NoRelat	Relays	NoRela	Relays	NoRela	elays	NoRela	Relays	Ao Rela	Relays
Country to Avoid	Braz	il	Nether	lands	Indi	ia	Keny	va	United .	States
Brazil	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Canada	90	1 00	00	1 00	98	90	00	00	.92	1.00
United States	.15	.62	.41	.63	.28	.65	.38	.40	0.00	0.00

Characterizing detours

- Which countries are Internet paths to popular destinations currently traversing?
- Does local traffic leave the country? To where?

• Can end-users avoid certain countries to popular destinations?

• Can end-users keep more local traffic local?

System: Routing Around Nation-States

- Developed an overlay network that:
 - Provides country avoidance
 - Is usable
 - Is scalable

System: Routing Around Nation-States

- Relays act as web proxies + conduct measurements
- Oracle triggers RIPE Atlas probes to conduct measurements
- Clients use PAC file to select appropriate relay for avoiding a country

```
function FindProxyForURL(url, host){
    if ((shExpMatch(host, "*.google.com")))
        return "PROXY_1.2.3.4:3128";
    if ((shExpMatch(host, "*.twitter.com")))
        return "PROXY_5.6.7.8:3128";
    return "DIRECT";
}
```

Future Work

- Connectivity within a country
- Relationship between IXPs and nation state routing
- Country avoidance based on IPv4 vs. IPv6 connectivity

Conclusion

- Paths commonly traverse known surveillance states 84% of paths from Brazil traverse the United States
- Relays can help prevent routing detours, but some of the more prominent surveillance states are the least avoidable
- Tromboning Brazilian paths decreased from 13.2% to 9.7% with relays.

Full write-up and more data at: ransom.cs.princeton.edu

System: Routing Around Nation-States

System: Routing Around Nation-States

Avoiding Routing Detours: Summary

 It is more difficult to avoid the United States than it is to avoid any other country

 Tromboning Brazilian paths decreased from 13.2% to 9.7%