ECDSA

G coff Huston APNIC

Its all about cryptography

The Basic Challenge

Pick a pair of keys such that:

- Messages encoded with one key can only be decoded with the other key
- Knowledge of the value of one key does not infer the value of the other key

The Power of Primes

 $(m^e)^d \equiv m \pmod{n}$

As long as *d* and *n* are relatively large, and *n* is the

product of two large prime numbers, then finding the value of *d* when you already know the values of *e* and *n* is computationally expensive

The Power of Primes

 $(m^e)^d \equiv m \pmod{n}$

As long as *d* and *n* are relatively large, and *n* is the

product of two large prime numbers, then finding the value of *d* when you already know the values of *e* and *n* is computationally expensive

But computers get larger and faster - what was infeasible yesterday may be possible tomorrow

The Power of Primes

 $(m^e)^d \equiv m \pmod{n}$

As long as *d* and *n* are relatively large, and *n* is the

product of two large prime numbers, then finding the value of *d* when you already know the values of *e* and *n* is computationally expensive

But computers get larger and faster - what was infeasible yesterday may be possible tomorrow The way to stay ahead is to make the value of n larger and larger

Why is this important?

Because much of the foundation of internet Security rests upon this relationship

My Bank...(I hope!)

My Bank's Digital Signature

Domain Name Certification

- The Commonwealth Bank of Australia has generated a key pair
- And they passed a certificate signing request to a company called "Symantec"
- Who is willing to vouch (in a certificate) that the entity who goes by the domain name of <u>www.commbank.com.au</u> also has a certain public key value
- So if I can associate this public key with a connection then I have a high degree of confidence that I've connected to www.commbank.com.au, as long as I am prepared to trust Symantec and the certificates that they issue

Why should i trust them?

			Keychain Access	Keychain Access				
	0							
	Click to unlock the Sy	rstem Roots keychain.				Q Search		
	Keychains							
	📫 login	Certificate Services						
	Directory Services	Root certificate authority Expires: Monday, 1 January 2029 at 10	59:59 AM Australian Eastern Davlight	Time				
	A iCloud	This certificate is valid						
	A System							
	System Poots							
	System Roots	Name	 Kind 	Expires	Keychain			
		SwissSign Platinum CA - G2	certificate	25 Oct 2036, 7:36:00 PM	System Roots			
		SwissSign Platinum Root CA - G3	certificate	4 Aug 2037, 11:34:04 PM	System Roots			
		SwissSign Silver CA - G2	certificate	25 Oct 2036, 7:32:46 PM	System Roots			
	1	SwissSign Silver Root CA - G3	certificate	4 Aug 2037, 11:19:14 PM	System Roots			
		Symantec Class 1 Public Primary Certification	Authority - G4 certificate	19 Jan 2038, 10:59:59 AM	System Roots			
		Symantec Class 1 Public Primary Certification	Authority - G6 certificate	2 Dec 2037, 10:59:59 AM	System Roots			
		Symantec Class 2 Public Primary Certification	Authority - G4 certificate	19 Jan 2038, 10:59:59 AM	System Roots			
		Symantec Class 2 Public Primary Certification	totally be continued	10-50-50 AV	System Roots			
		Symance class 3 Public Primary Certification	h Authority - G4 certificate	2 Dec 2037, 10:59:59 AM	System Roots			
		Symantec Class 3 Public Primary Certification	h Authority - G6 certificate	2 Dec 2037, 10:59:59 AM	System Roots			
				0.0 0001, 10.10.07.011	oyotom nooto			
		T-TeleSec GlobalRoot Class 2	certificate	2 Oct 2033, 10:59:59 AM	System Roots			
		T-TeleSec GlobalRoot Class 3	certificate	2 Oct 2033, 10:59:59 AM	System Roots			
		TC TrustCenter Class 2 CA II	certificate	1 Jan 2026, 9:59:59 AM	System Roots			
	Category	TC TrustCenter Class 3 CA II	certificate	1 Jan 2026, 9:59:59 AM	System Roots			
	All Items	TO TrustCenter Class 4 CA II	certificate	1 Jan 2026, 9:59:59 AM	System Roots			
		TC TrustCenter Universal CA II	certificate	1 Jan 2020, 9:59:59 AM	System Roots			
The cert I'm be	ina	TC TrustCenter Universal CA III	certificate	1 Jan 2030, 10:59:59 AM	System Roots			
		TeliaSonera Poot CA vd	certificate	18 Oct 2032 11:00:50 PM	System Roots			
asked to trust v	ras	thewte Primary Root CA	certificate	17 Jul 2036 9:59:59 AM	System Roots			
· · · · ·	. 0. 1.	thavite Primary Root CA - G2	certificate	19 Jan 2038, 10:59:59 AM	System Roots			
issued by a cert	it ication	thawte Primary Root CA - G3	certificate	2 Dec 2037 10:59:59 AM	System Roots			
		TRUST2408 OCES Primary CA	certificate	4 Dec 2037, 12:11:34 AM	System Roots			
authority that w	ny	Trusted Certificate Services	certificate	1 Jan 2029, 10:59:59 AM	System Roots			
Loop along her	l'au se le	Trustis FPS Root CA	certificate	21 Jan 2024, 10:36:54 PM	System Roots			
browser aireaay	41.0242	TÜBİTAK UEKAE Kök Sertifika Hizmet Sağlayı	cısı - Sürüm 3 certificate	21 Aug 2017, 9:37:07 PM	System Roots			
- $ -$	1	TÜRKTRUST Elektronik Sertifika Hizmet Sağlı	ayıcısı certificate	23 Dec 2017, 5:37:19 AM	System Roots			
= 50 1 trust tha	(+ ccr+:	TWCA Global Root CA	certificate	1 Jan 2031, 2:59:59 AM	System Roots			
	1	TWCA Root Certification Authority	certificate	1 Jan 2031, 2:59:59 AM	System Roots			
		UCA Global Root	certificate	31 Dec 2037, 11:00:00 AM	System Roots			
		UCA Root	certificate	31 Dec 2029, 11:00:00 AM	System Roots			
		UTN - DATACorp SGC	certificate	25 Jun 2019, 5:06:30 AM	System Roots			
		UTN-USERFirst-Client Authentication and Em	all certificate	10 Jul 2019, 3:36:58 AM	System Roots			
		UTN-USERFirst-Hardware	certificate	10 Jul 2019, 4:19:22 AM	System Roots			
		UTN-USERFirst-Network Applications	certificate	10 Jul 2019, 4:57:49 AM	System Roots			
		UTN-USERFirst-Object	certificate	10 Jul 2019, 4:40:36 AM	System Roots			
		Verisign Class 1 Public Primary Certification /	Authority - G3 certificate	17 Jul 2036, 9:59:59 AM	System Roots			
		VeriSign Class 2 Public Primary Certification	Authority - G3 certificate	17 Jul 2036, 9-59-59 AM	System Roots			
		VeriSign Class 3 Public Primary Certification	Authority - G4 certificate	19 Jan 2038, 10:59:59 AM	System Roots			
		VeriSign Class 3 Public Primary Certification	Authority - G5 certificate	17 Jul 2036, 9:59:59 AM	System Roots			
		VeriSign Class 4 Public Primary Certification	Authority - G3 certificate	17 Jul 2036, 9:59:59 AM	System Roots			
		VeriSign Universal Root Certification Authorit	y certificate	2 Dec 2037, 10:59:59 AM	System Roots			
		Visa eCommerce Root	certificate	24 Jun 2022, 10:16:12 AM	System Roots			
		Visa Information Delivery Root CA	certificate	30 Jun 2025, 3:42:42 AM	System Roots			
		VRK Gov. Root CA	certificate	19 Dec 2023, 12:51:08 AM	System Roots			
		WellsSecure Public Root Certificate Authority	certificate	14 Dec 2022, 11:07:54 AM	System Roots			
		XRamp Global Certification Authority	certificate	1 Jan 2035, 4:37:19 PM	System Roots			
		+ i Copy	181 it	iems				

That's a big list of people to Trust

Are they all trustable?

You	r Certificates	People	Servers	Authorities	Others
ou have certificates on file that identify these certifica	te authorities:				
Certificate Name			Security	Device	
certSIGN ROOT CA			Builtin O	bject Token	
 China Financial Certification Authority 					
CFCA EV ROOT			Builtin O	bject Token	
China Internet Network Information Center					
China Internet Network Information Center EV	Certificates Roo	ot	Builtin O	bject Token	
Chunghwa Telecom Co., Ltd.					
ePKI Root Certification Authority			Builtin O	bject Token	
CNNIC					
CNNIC ROOT			Builtin O	bject Token	
COMODO CA Limited					
COMODO ECC Certification Authority			Builtin O	bject Token	
COMODO Certification Authority			Builtin O	bject Token	
COMODO RSA Certification Authority			Builtin O	bject Token	
AAA Certificate Services			Builtin O	bject Token	
Secure Certificate Services			Builtin O	bject Token	
Trusted Certificate Services			Builtin O	bject Token	
COMODO ECC Domain Validation Secure Server	CA 2		Software	Security Device	
COMODO RSA Domain Validation Secure Server	CA		Software	Security Device	
COMODO High Assurance Secure Server CA			Software	Security Device	
ComSign					
ComSign CA			Builtin O	bject Token	
ComSign Secured CA			Builtin O	bject Token	
 Cybertrust, Inc 					
Cybertrust Global Root			Builtin O	bject Token	
D-Trust GmbH					
D-TRUST Root Class 3 CA 2 EV 2009			Builtin O	bject Token	
D-TRUST Root Class 3 CA 2 2009			Builtin O	bject Token	
Dell Inc.					
iDRAC6 default certificate			Software	Security Device	
Deutsche Telekom AG					
Deutsche Telekom Root CA 2			Builtin O	bject Token	
 Deutscher Sparkassen Verlag GmbH 					
S-TRUST Authentication and Encryption Root C	A 2005:PN		Builtin O	bject Token	
S-TRUST Universal Root CA			Builtin O	bject Token	
Dhimyotis					
Certigna			Builtin O	bject Token	
DigiCert Inc					
DigiCert Trusted Root G4			Builtin O	bject Token	
DigiCert Global Root CA			Builtin O	bject Token	
DigiCert Assured ID Root G3			Builtin O	bject Token	

That's a big list of people to Trust

Are they all trustable? Not! Evidently

		Your Certificates People	Servers Authorities Others	
Yo	u have certificates on file that id	entify these certificate authorities:		
C	ertificate Name		Security Device	E\$
	certSIGN ROOT CA		Builtin Object Token	
T	China Financial Certification A	uthority		
	CFCA EV ROOT		Builtin Object Token	
T	China Internet Network Inform	ation Center		
	China Internet Nethork Info	ormation Center EV Certificates Root	Builtin Object Token	
V	Chunghwa Telecon			
	erki kou Cartif 🧶 💛		A A 1 1 a googleonlinesecurity.blogspot.c	om.au/2015/03/mainta
	CNNIC			
	CNNIC ROOT		Google Online Security Blog: Maintaining digital cer	tificate security
	COMODO CA Limite			
	COMODO ECC (
	COMODO Certif			
	COMODO RSA C			
	AAA Certificate	Maintaining digita	certificate security	
	Secure Certifica	Manntanning algita	certificate security	
	Trusted Certific			
	COMODO ECC [C.1 100	
	COMODO RSA E	Posted: Monday, March 23, 2015	G+1 \ 106	· · ·
	COMODO High			
	ComSign			
	ComSign CA	Posted by Adam Langley, Security	Engineer	
	ComSign Secure			
	Cybertrust, Inc	On Friday, March 20th, we became	aware of unauthorized digital certificates for several Google dor	nains. The
	Cybertrust Glob	certificates were issued by an inter	mediate certificate authority apparently held by a company called	MCS
T	D-Trust GmbH	Holdings. This intermediate	ate was issued by CNNIC.	
	D-TRUST Root (
	D-TRUST Root (CNNIC is included in all major root	stores and so the misissued certificates would be trusted by alm	ostall
Ŧ	Dell Inc.	browsers and operating systems (hrome on Windows OS X and Linux ChromeOS and Firefox 3	3 and greater
	iDRAC6 default	would have rejected these certifica	tes because of public-key pipping, although misissued certificate	e for other sites
Ŧ	Deutsche Telekom	likely eviet	tes because of public-key pirining, altrough misissued certificate	s for other sites
	Deutsche Telek	likely exist.		
V	Deutscher Sparkas			
	S-TRUST Auther	We promptly alerted CNNIC and of	ther major browsers about the incident, and we blocked the MCS	Holdings
	S-TRUST Univer	certificate in Chrome with a CRLSe	et push. CNNIC responded on the 22nd to explain that they had o	contracted with
T	Dhimyotis	MCS Holdings on the basis that M	CS would only issue certificates for domains that they had registe	ered. However,
	Certigna	rather than keep the private key in	a suitable HSM, MCS installed it in a man-in-the-middle proxy. The	hese devices
T	DigiCert Inc	intercept secure connections by ma	asquerading as the intended destination and are sometimes used	d by companies
	DigiCert Truster	to intercept their employees' secur	e traffic for monitoring or legal reasons. The employees' compute	rs normally
	DigiCert Global	have to be configured to trust a pro	xy for it to be able to do this. However, in this case, the presume	d proxy was
	DigiCert Assure	given the full authority of a public C	A, which is a serious breach of the CA system. This situation is	similar to a
	View Ed	failure by ANSSI in 2013		
		101010 Jy /11001 11 2010.		

That's a big list of people to Trust

Are they all trustable? Not! Evidently

With unpleasant consequences when it all goes wrong

With unpleasant consequences when it all goes wrong

What's going wrong here?

- The TLS handshake cannot specify WHICH CA should be used to validate the digital certificate
- Your browser will allow ANY CA to be used to validate a certificate

What's going wrong here?

- The TLS handshake cannot specify WHICH CA should be used to validate the digital of anesonely bad.
 Your brow WOW That's anesonely bad.
 Your brow WOW That's anesonely bad.
- Your brow Wo will allow ANY CA to be used to validate a certificate

What's going wrong here?

- The TLS handshake cannot specify WHICH CA should be used to validate the digital of anesomely bad.
 Your brow WOW That's anesomely bad.
- Your brow WOW: Allow ANIV CA to be used to validate a Here's a lock it might be the lock on your front door for all i know.

The lock might LOOK secure, but don't worry - literally ANY key can open it!

Lets use the DNS!

cafepress.com/nxdomain

Seriously

Where better to find out the public key associated with a DNS name than to look it up in the DNS?

Seriously

Where better to find out the public key associated with a DNS name than to look it up in the DNS?

- Why not query the DNS for the HSTS record?

- Why not query the DNS for the issue of the domain name cert?
 Why not query the DNS for the domain name public key cert as a simple self-cite domain name public key cert as a sinterva self-cite domain name public key cert as a si

DANE

• Using the DNS to associated domain name public key certificates with domain name

[Docs] [txt pdf] [draft-ietf-dane-p] [Dif	ff1] [Diff2] [Errata]
Updated by: <u>7218</u> , <u>7671</u>	PROPOSED STANDARD Errata Exist
Internet Engineering Task Force (IETF) Request for Comments: 6698 Category: Standards Track ISSN: 2070-1721	P. Hoffman VPN Consortium J. Schlyter Kirei AB August 2012

The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA

Abstract

Encrypted communication on the Internet often uses Transport Layer Security (TLS), which depends on third parties to certify the keys used. This document improves on that situation by enabling the administrators of domain names to specify the keys used in that domain's TLS servers. This requires matching improvements in TLS client software, but no change in TLS server software.

Status of This Memo

This is an Internet Standards Track document.

TLS with DANE

- Client receives server cert in Server Hello
 - Client lookups the DNS for the TLSA Resource Record of the domain name
 - Client validates the presented certificate against the TLSA RR
- Client performs Client Key exchange

The search for small keys

BUT

- Large keys and the DNS don't mix very well:
 - Either we try and make UDP fragmentation work reliably (for once!)
 - Or we switch the DNS to use TCP
- Neither option sounds like fun!
- So can we defer the crunch time for a while?

Enter Elliptical Curves

Alice creates a key pair, consisting of a private key integer d_A, randomly selected in the interval [1, n - 1]; and a public key curve point Q_A = d_A × G. We use × to denote elliptic curve point multiplication by a scalar.

For Alice to sign a message m, she follows these steps:

- 1. Calculate e = HASH(m), where HASH is a cryptographic hash function, such as SHA-2.
- 2. Let z be the L_n leftmost bits of e, where L_n is the bit length of the group order n.
- Select a cryptographically secure random integer k from [1, n 1].
- Calculate the curve point (x₁, y₁) = k × G.
- Calculate r = x₁ mod n. If r = 0, go back to step 3.
- 6. Calculate $s = k^{-1}(z + rd_A) \mod n$. If s = 0, go back to step 3.
- The signature is the pair (r, s).

When computing s, the string z resulting from HASH(m) shall be converted to an integer. Note that z can be greater than n but not longer.[1]

As the standard notes, it is crucial to select different signatures, otherwise the equation in step 5 can be solved for d_A , the private key: Given two signatures (r, s) and (r, s'), employing the same unknown k for different known messages m and m', an attacker can calculate z and z', and since $s - s' = k^{-1}(z - z')$ (all operations in this paragraph are done modulo p_1) the attacker can find $k = \frac{z-z'}{s-s'}$. Since $s = k^{-1}(z + rd_A)$, the attacker can now calculate b and $b = \frac{z-z}{r}$. This implementation failure was used, for example, to extract the signing key used in the PlayStation 3 gaming-console [^{2]} Another way ECDSA signature may leak private keys is when k is generated by a faulty random number generation caused users of Android Bitcoin Wallet to lose their funds in August 2013. [^{3]} To ensure that k is unique for each message one may bypass random number generation caused users [⁴] (z - z').

Signature verification algorithm [edit]

For Bob to authenticate Alice's signature, he must have a copy of her public-key curve point QA. Bob can verify QA is a valid curve point as follows:

- 1. Check that Q , is not equal to the identity element Q, and its coordinates are otherwise valid
- Check that Q_A lies on the curve
- 3. Check that $n \times Q_A = O$

After that, Bob follows these steps:

1. Verify that r and s are integers in [1, n - 1]. If not, the signature is invalid. 2. Calculate c = HASH(m), where HASH is the same function used in the signature generation. 3. Let z be the L_n leftmost bits c = c. 4. Calculate $u = s^{-1} \mod n$. 5. Calculate $u = zu \mod n$ and $u_2 = ru \mod n$. 6. Calculate the curve point $(z_1, y_1) = u_1 \times G + u_2 \times Q_4$.

7. The signature is valid if $r \equiv x_1 \pmod{n}$, invalid otherwise.

Note that using Shamir's trick, a sum of two scalar multiplications $u_1 \times G + u_2 \times Q_4$ can be calculated faster than two scalar multiplications done independently.^[5]

Correctness of the algorithm [edit] It is not immediately obvious why verification even functions correctly. To see why, denote as C the curve point computed in step 6 of verification. $C = u_1 \times G + u_2 \times Q_A$ From the definition of the public key as $Q_A = d_A \times G$, $C = u_1 \times G + u_2 d_A \times G$ Because elliptic curve scalar multiplication distributes over addition, $C = (u_1 + u_2 d_A) \times G$ Expanding the definition of u_1 and u_2 from verification step 5, $C = (zs^{-1} + rd_As^{-1}) \times G$ Collecting the common term s^{-1} , $C = (z + rd_A)s^{-1} \times G$ Expanding the definition of s from signature step 6. $C = (z + rd_A)(z + rd_A)^{-1}(k^{-1})^{-1} \times G$ Since the inverse of an inverse is the original element, and the product of an element's inverse and the element is the identity, we are left with $C = k \times G$ From the definition of r, this is verification step 6. This shows only that a correctly signed message will verify correctly; many other properties are required for a secure signature algorithm.

Enter Elliptical Curves

10

Alice creates a key pair, consisting of a private key integer d_A, randomly selected in the interval [1, n - 1]; and a public key curve point Q_A = d_A × G. We use × to denote elliptic curve point multiplication by a scalar.

For Alice to sign a message m, she follows these steps:

- 1. Calculate e = HASH(m), where HASH is a cryptographic hash function, such as SHA-2.
- 2. Let z be the L_n leftmost bits of e, where L_n is the bit length of the group order n.
- 3. Select a cryptographically secure random integer k from $\left[1,n-1
 ight]$
- 4. Calculate the curve point $(x_1,y_1)=k imes G.$
- 5. Calculate $r = x_1 \mod n$. If r = 0, go back to step 3.
- 6. Calculate $s=k^{-1}(z+rd_A) \mod n$. If s=0, go back to step 3.
- 7. The signature is the pair (r,s).

"It is not immediately obvious why verification even functions correctly."

2. Check that Q_A lies on the curve 3. Check that $n \times Q_A = O$

After that, Bob follows these steps:

1. Verify that r and s are integers in [1, n - 1]. If not, the signature is invalid. 2. Calculate c = HASH(m), where HASH is the same function used in the signature generation. 3. Let z be the L_n leftmost bits of e. 4. Calculate $w = s^{-1} \mod n$. 5. Calculate $u = zw \mod n$ and $u = zw \mod n$. 6. Calculate $u = zw \mod n$ (z_1, y_1) = $u_1 \times G + u_2 \times G_A$. 7. The signature is valid if $r \equiv z_1 \pmod{(n d_1)}$, invalid preverse.

Note that using Shamir's trick, a sum of two scalar multiplications $u_1 \times G + u_2 \times Q_A$ can be calculated faster than two scalar multiplications done independently.^[5]

Correctness of the algorithm [edit]

It is not immediately obvious why verification even functions correctly. To see vhy, denote as C the curve point computed in step 6 of verification,

$C = u_1 \times G + u_2 \times Q_A$

From the definition of the public key as $Q_A = d_A \times G$, $C = u_1 \times G + u_2 d_A \times G$

Because elliptic curve scalar multiplication distributes over addition

 $C = (u_1 + u_2 d_A) imes G$

Expanding the definition of u_1 and u_2 from verification step 5,

 $C=(zs^{-1}+rd_As^{-1}) imes G$

Collecting the common term s^{-1} ,

 $C = (z + rd_A)s^{-1} \times G$

Expanding the definition of s from signature step 6,

 $C = (z + rd_A)(z + rd_A)^{-1}(k^{-1})^{-1} \times G$

Since the inverse of an inverse is the original element, and the product of an element's inverse and the element is the identity, we are left with

 $C = k \times G$

From the definition of r, this is verification step 6.

This shows only that a correctly signed message will verify correctly; many other properties are required for a secure signature algorithm

Elliptic Curve Cryptography allows for the construction of "strong" public/private key pairs with key lengths that are far shorter than equivalent strength keys using RSA

256-bit ECC public key should provide comparable security to a 3072-bit RSA public key

ECDSA vs RSS

\$ dig +dnssec u5221730329.s1425859199.i	5075.vcf10	00.5a593.y.dc	\$ dig +dnssec u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.ne					
; <<>> DiG 9.9.6-P1 <<>> +dnssec u52217 ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: M ;; flags: qr rd ra ad; QUERY: 1, ANSWER	30329.s142 NOERROR, - : 2, AUTHO	25859199.i50; id: 61126 DRITY: 4, ADI	; <<>> DiG 9.9.6-P1 <<>> +dnssec u5221730329.s1425859199.i5075.vcf100.5a5 nxdomain.net ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25461 ;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 1					
;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags: do; udp: 4096 ;; QUESTION SECTION: ;u5221730329.s1425859199.i5075.vcf100.52	6 a593.y.do†	tnxdomain.ne1	;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags: do; udp: 4096 ;; QUESTION SECTION: ;u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. IN A					
;; ANSWER SECTION: u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net u5221730329.s1425859199.i5075.vcf100.5a593.y.dotnxdomain.net			;; ANSWER SECTION: u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. 1 IN / ?.79.186 u5221730329.s1425859199.i5075.vcf100.5a593.z.dotnxdomain.net. 1 IN f ; 4 3600 2020072423					
;; AUTHORITY SECTION: nsl.5a593.y.dotnxdomain.net. 1 nsl.5a593.y.dotnxdomain.net. 1 5a593.y.dotnxdomain.net. 3598 IN 5a593.y.dotnxdomain.net. 3600 IN	IN IN NS RRSIG	NSEC X RRSIG N ns1.5a593.y NS 13 4 360	;; AUTHORITY SECTION: 33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3 33d23a33.3b7acf35.9bd5b553.3ad4aa35.09207c36.a095a7ae.1dc33700.103ad556.3 5a593.z.dotnxdomain.net. 3599 IN NS nsz1.z.dotnxdomain.net. 5a593.z.dotnxdomain.net. 3600 IN RRSIG NS 5 4 3600 20200724235	16395067.a12ec545.618 16395067.a12ec545.618)729104013 1968 5a593				
;; Query time: 1880 msec ;; SERVER: 127.0.0.1#53(127.0.0.1) ;; WHEN: Thu Mar 12 03:59.42 UTC 2015 ;; MS; SIZE rcvd: 527			;; Query time: 1052 msec ;; SERVER. 127.0.0.1#53(127.0.0.1) ;; WHLN: Thu Mar 12 03:59:57 VTC 2015 ;; MSC SIZE rcvd: 937					

ECDSA signed response – 527 octets

RSA signed response – 937 octets

So let's use ECDSA for DNSSEC

Yes!

So let's use ECDSA for DNSSEC

Yes!

Let's do that right now!

So lets use ECDSA for DNSSEC

Or maybe we should look before we leap...

- Is ECDSA a "well supported" crypto protocol?
- If you signed using ECDSA would resolvers validate the signature?

We are now testing for where we see ECDSA Support

DNSSEC RSA and ECDSA Validation Rate by country (%)

And where we don't

DNSSEC RSA and NOT ECDSA Validation Rate by country (%)

Today we're in Spain...

Region Map for Southern Europe (039)

Today we're in Spain...

Use of DNSSEC-ECDSA Validation for Spain (ES)

The Top 8 Spanish ISPs

ASN	AS Name	ECDSA Validates	RSA Validates	ECDSA and RSA Validates	ECDSA : RSA Ratio (%)	Uses Google PDNS	Samples V
AS3352	TELEFONICADEESPANA TELEFONICA DE ESPANA	2.91%	2.96%	2.56%	98.32%	4.18%	490,784
AS12479	UNI2-AS France Telecom Espana SA	0.78%	0.81%	0.64%	95.81%	1.22%	173,451
AS12430	VODAFONEES VODAFONE ESPANA S.A.U.	1.23%	1.24%	1.10%	98.75%	1.63%	116,203
AS12715	JAZZNET Jazz Telecom S.A.	2.78%	2.75%	2.43%	100.00%	3.61%	115,307
AS6739	ONO-AS VODAFONE ONO, S.A.	8.16%	8.00%	6.97%	100.00%	10.54%	106,095
AS12338	EUSKALTEL Euskaltel S.A.	2.66%	2.69%	2.39%	98.91%	4.02%	17,047
AS16299	XFERA Xfera Moviles SA	0.04%	4.92%	0.01%	0.74%	0.43%	16,435
AS12357	COMUNITEL VODAFONE ESPANA S.A.U.	1.16%	1.14%	0.97%	100.00%	1.52%	16,102

And the extent to which their uses perform DNSSEC validation with ECDSA and RSA

And it if wasn't for Google ...

ASN	AS Name	ECDSA Validates	RSA Validates	ECDSA and RSA Validates	ECDSA : RSA Ratio (%)	Jses Google PDNS	Samples 🔻
AS3352	TELEFONICADEESPANA TELEFONICA DE ESPANA	2.91%	2.96%	2.56%	98.32%	4.18%	490,784
AS12479	UNI2-AS France Telecom Espana SA	0.78%	0.81%	0.64%	95.81%	1.22%	173,451
AS12430	VODAFONEES VODAFONE ESPANA S.A.U.	1.23%	1.24%	1.10%	98.75%	1.63%	116,203
AS12715	JAZZNET Jazz Telecom S.A.	2.78%	2.75%	2.43%	100.00%	3.61%	115,307
AS6739	ONO-AS VODAFONE ONO, S.A.	8.16%	8.00%	6.97%	100.00%	10.54%	106,095
AS12338	EUSKALTEL Euskaltel S.A.	2.66%	2.69%	2.39%	98.91%	4.02%	17,047
AS16299	XFERA Xfera Moviles SA	0.04%	4.92%	0.01%	0.74%	0.43%	16,435
AS12357	COMUNITEL VODAFONE ESPANA S.A.U.	1.16%	1.14%	0.97%	100.00%	1.52%	16,102

And it if wasn't for Google ...

ASN	AS Name	ECDSA Validates	RSA Validates	ECDSA and RSA Validates	ECDSA : RSA Ratio (%)	Jses Google PDNS	Samples 🔻
AS3352	TELEFONICADEESPANA TELEFONICA DE ESPANA	2.91%	2.96%	2.56%	98.32%	4.18%	490,784
AS12479	UNI2-AS France Telecom Espana SA	0.78%	0.81%	0.64%	95.81%	1.22%	173,451
AS12430	VODAFONEES VODAFONE ESPANA S.A.U.	1.23%	1.24%	1.10%	98.75%	1.63%	116,203
AS12715	JAZZNET Jazz Telecom S.A.	2.78%	2.75%	2.43%	100.00%	3.61%	115,307
AS6739	ONO-AS VODAFONE ONO, S.A.	8.16%	8.00%	6.97%	100.00%	10.54%	106,095
AS12338	EUSKALTEL Euskaltel S.A.	2.66%	2.69%	2.39%	98.91%	4.02%	17,047
AS16299	XFERA Xfera Moviles SA	0.04%	4.92%	0.01%	0.74%	0.43%	16,435
AS12357	COMUNITEL VODAFONE ESPANA S.A.U.	1.16%	1.14%	0.97%	100.00%	1.52%	16,102

There would be no DNSSEC at all!

And no ECDSA!

The full daily report

