

Mapa de Topología usando sondas RIPE Atlas

Sebastian Castro -- NZRS MAT-WG, RIPE 73, Madrid

En esta presentación

- Motivación
- Objetivos

Mapping a country's Internet Topology using RIPE Atlas

Sebastian Castro -- NZRS MAT-WG, RIPE 73, Madrid

Motivation

- Improve understanding of the Internet connectivity at a country level Started with New Zealand, applicable to any country
- Checking with evidence about common (mis)conceptions
 Better informed decisions
- Finding oddities, strange behavior
 Traffic destined to the country leaving the country
 Use and benefit of IXs

Goals

- Create reproducible research
 By making code available
 Methodology available
 Data available
- Generate a visual representation of BGP adjacencies derived from IP paths

Added with analytics

Allow anybody to explore and draw their own conclusions

Methodology

- Use RIPE Atlas probes as starting point
 Generate and collect as many IP paths as possible
- Select a reasonable number/quality of destinations
 - 1. RIPE Atlas probes public address
 - 2. Curated list of popular sites (Alexa minus undesirable sites)
 - 3. Active IPv4 addresses in the country address space BGP views + https://censys.io datasets
- Select reasonable traffic to use UDP traceroute unreliable ICMP Paris available TCP traceroute testing pending

Methodology

Deal with incompleteness

```
You can't map to ASN Star nodes
```

Host that don't respond to ICMP probing

Private addresses

Non-routable addresses

Some internal routing within ISP

AWS

IXP addresses

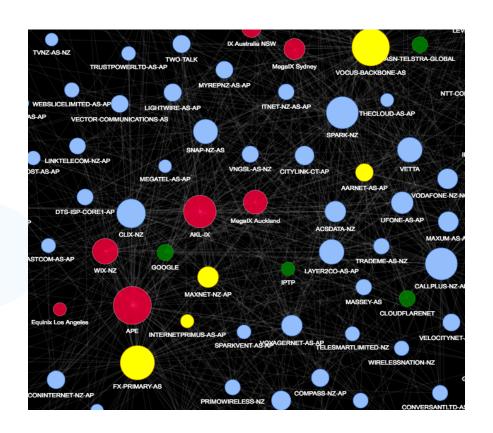
Most of them visible using PeeringDB

Methodology

Hop Name	AS	Guessed AS
Probe 17594	133579	133579
Private 17594-1		133579
*	XO	133579
131.203.224.57	9503	9503
122.56.118.165	4648	4648
*		4648
125.236.192.9	4771	4771
*		4771
125.236.218.204	4771	4771

- Patching up the path
 - Star nodes (addresses not answering) and private addresses can't be mapped to ASN
 - Assume inter-AS edges will answer ICMP with public addresses
 - Assume start/private nodes happen inside AS.

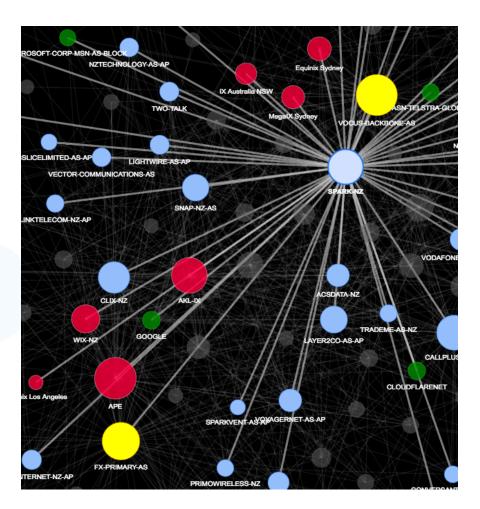
Code


IpTopologyMap https://github.com/NZRS/IpTopologyMap Fetch BGP data using BGPStream (CAIDA) Determine country's IPv4 address space from RIR and BGP data Select sources and destinations Schedule traceroutes Collect results Combine

Visualize

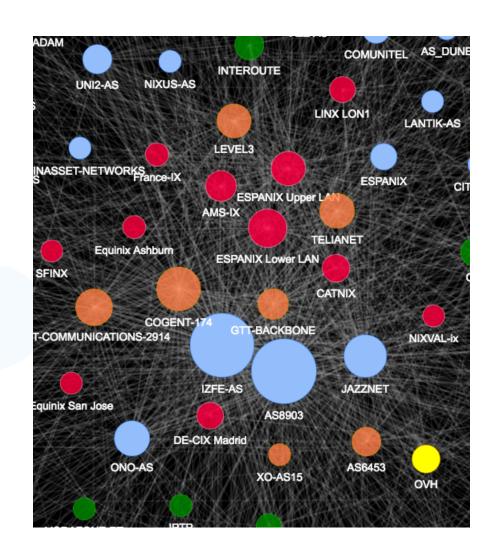
Results

- NZ IP Topology Map
 - http:// ip.topology.net.nz/ NZ 20160922/
- Legend
 - Red: IX
 - Blue: In-country AS
 - Yellow: Secondary country
 - Green: any other country
 - Orange: Tier1


A view of NZ

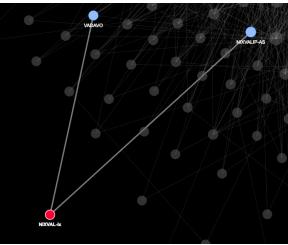
Metadata

- 78 probes
- 32225 traces
 - 68.67% complete
 - 31.33% incomplete
- Trace length
 - 10 hops +/- 4


Observations

- Most influential providers are Australian
- New IXPs are gaining traction
 - AKL-IX and MegalX
 - APE and WIX are well established
- Big providers peer with each other
 - SPARK and CLIX/Vodafone

Results


- Spain Topology
 - http:// ip.topology.net.nz/ ES-20160914/
- Metadata
 - 115 probes
 - 65052 traces
 - Complete: 72.27%
 - Incomplete: 27.73%
 - Trace length
 - 12 +/- 4

A view of ES

- IZFE as big as AS8903 (BT)
- Telefonica not quite as big as expected
- Three IXs identified
 - ESPANIX 3 entries
 - CATNIX
 - NIXVAL

Your time to play

- Clicking in a node highlights the neighbors
 Display Organization, number of detected peers
 and country
- Clicking an edge shows the addresses involved in that edge
- Data used is available as JSON file Network representation in GraphML format

Related work

- CAIDA https://www.caida.org/research/topology/
- IXP Country Jedy https://github.com/emileaben/ixp-country-jedi Emile Aben, RIPE NCC

IXP Country Jedi integration

- We all love IXP Country Jedi
- Now you can generate IXP Country Jedi from this

Example:

http://ip.topology.net.nz/NZ_20160922/ IXP_Country_Jedi/

```
7 """ export-to-ixp-jedi.py
8    Takes the set of files created by an IP Topology Map run and converts
9    them to the structure expected by the IXP Country Jedi to generate the
10    visualization and analysis
11 """
```


Caveats

- Potential Bias on sources
 Clue core
 Not enough diversity
- Not all destinations covered
 A bit of a scale problem
 A bit of a "what's visible" problem
- ICMP Traceroute not fully reliable Possibly better with TCP traceroute

Future Work

- Automate analytics process
 Link RTT estimation
- Run process regularly
 Path detection changes
 New actors entering the market
- Make data snapshots available

Gracias!

Contact: sebastian@nzrs.net.nz

www.nzrs.net.nz

